
PORTFOLIO

ANDO DU 

TECHNICAL ART

 ancient.prophet@icloud.com                                             https://ando-du.com
 



RAY-
TRACING 
WITH A 
“TWIST”
HOW DO WE SEE? 
WHEN LIGHT IS RAIN 
- COMPUTE SHADER & 
DATA STRUCTURE 

Powered by ReSTIR accelerated raytracing with 
a twist, this project showcases the overlooked 
potential of state-of-the-art technology for 
artist expressions in a game environment. 

It starts with my reflection on why games are 
becoming increasingly photorealistic. Ray 
tracing is just one of the many emerging tools 
that make simple yet naive assumptions about 
the artistic style for games in the future. Ray 
tracing heavily relies on ray tracing hardware 
that is based on the same preconception. Other 
art styles are potentially in jeopardy because of 
the path dependence it might create. Imagine a 
future where photorealistic games can be highly 
optimised while others are slow and painful to 
run and play. 

But, raytracing does NOT have to be 
photorealistic. It can be surrealistic as we show 
in this project. When “gravity” is programmed to 
bend light, we achieve an art style resembling 
the film Inception. My implementation is a 
modification of an open-source Unity path 
tracing package so with a little more work, it can 
also deal with complex texture, complex terrain, 
and almost everything one would need to render 
a real game.

Work done:
An updated Bounding Volume Hierarchy (BVH) 
data structure to accelerate our raytracing 
with a twist. 
A new fast curved ray intersection algorithm to 
check whether a curved ray hits a BVH/a mesh 
bounding box (AABB)/a mesh triangle.   
An updated illumination algorithm 

Programming language: 
C#, HLSL  

Special thanks to:
Pjbomb2 @ Github for their TrueTrace-Unity-
Pathtracer package 
H. Ylitie et al. @ Nvidia for their paper Efficient 
Incoherent Ray Traversal on GPUs Through 
Compressed Wide BVHs 
Sebastian Lague @ Github for test scenes 



LEFT:
chess 
scene

rendering

TOP 
RIGHT:

rendering

BOTTOM 
RIGHT:

chess 
scene set

VIDEO on 
next page

(might take 
some time 

to load)





LCD SCREEN 
COLOUR 
DISPLAY DEMO

CAN YOU FIND THE COLOUR YOU 
CANNOT SEE? - UNLIT SHADER

A game prototype that asks questions about our 
colour perception. Have you ever wondered what is 
behind the digital display on your phone? Are you 
seeing the true colours? Or, is it an illusion? 

This project offers a rare opportunity to see 
through the facade and reflect on how colour is 
perceived in our digital world. You might know the 
RGB representation of colours on a computer. So, 
what about a CMYK representation, or can there be 
even more freedom? Well, you will see when you find 
the hidden colour! 

Work done:
Smooth game control and navigation
Modelling and texture mapping. 
Colour deconstruction algorithm (HLSL)
A low-tech solution to the one-way flow of 
information from C# script to HLSL shader for 
game progression and gameplay feedback

Programming language:
C#

HLSL

Special thanks to:
Sion Fletcher for Technical Art Support



DIGITAL COLOUR 
BLENDING & DEMO 
WEBAR PORTING 
 
CAN YOU FIND THE COLOUR YOU CANNOT 
SEE? NO.2 - CUSTOM RENDER PIPELINE  

A game prototype that asks questions about our colour perception. 
Have you ever wondered what is in the oil paint? Are you seeing the 
true colours? Or, is it an illusion? 

This project offers a rare opportunity to see through the facade 
and reflect on how colour is perceived in both our digital and 
physical world. You might know the RGB representation of colours 
on a computer. But what makes oil paint so distinctively different?  

Work done:
Unity WebAR space and speed optimisation
Render Queue order hack
Digital oil mixing algorithm (R & HLSL)
Smooth (40fps+) Unity AR experience requiring only a web browser

Programming language:
C#
HLSL

R 

Special thanks to:
Sion Fletcher for Technical Art Support





RAYTRACING WITH 
A “TWIST” NO.2 DEMO

COMPUTE SHADER & CAMERA PATH 
ANIMATION  

Special thanks to: 

Sebastian Lague @ Github for models 

Sion Fletcher for technical art support

 





CPU 
SIMULATED
3D-PIXEL 
VIDEO 
PLAYER DEMO

NUCLEAR AFTER LÁSZLÓ 
MOHOLY-NAGY - CPU 
SIMULATED GPU RAYTRACING & 
COMPUTE SHADER

A showcase of my understands of compute shader 
and unlit shader and how to opitimise them when 
simulated using CPU. Pixels are not merely 2D 
pixels but also can be 3D shapes including Platonic 
solid, stars, and spheres. 

Work done:
WebAR porting
Real-time in-editor scene buidling tool 
CPU simulated Raytracing
CPU simulated Compute Shader
CPU simulated Unlit Shader
3D models as “2D pixels” 

Programming language:
C#

HLSL

Special thanks to:
Sion Fletcher for Technical Art Support


